3

LAGOAS DE MATURAÇÃO

ASPECTOS GERAIS

Tipo de lagoa que recebe um afluente cuja DBO está praticamente estabilizada e o oxigênio dissolvido se faz em toda a massa líquida.

⇒ Objetivos

- ⇒ Remoção de patogênicos
- ⇒ Remoção de nitrogênio e fósforo

⇒ Principais elementos atuantes

- ⇒ Oxigênio dissolvido
- ⇒ Temperatura e insolação
- ⇒ Grande zona fótica radiação UV todo perfil vertical
- ⇒ Altos valores de pH
- ⇒ Escassez de alimentos
- ⇒ Predatismo

LAGOAS DE MATURAÇÃO

DESCRIÇÃO DO PROCESSO

As lagoas de maturação constituem um pós-tratamento de processos que objetivem a remoção da DBO, sendo usualmente projetadas como uma série de lagoas, ou como uma lagoa única com divisões por chincanas. A eficiência na remoção de coliformes é bastante elevada frente aos principais elementos atuantes.

⇒ Microorganismos patogênicos

- ⇒ ambiente ideal é o trato intestinal humano
- ⇒ tendência de morte rede, sistema tratamento, no corpo receptor
- ⇒ eliminação total: helmintos, cistos

⇒ Profundidade

⇒ Baixa → favorecer mecanismos atuantes

LAGOAS DE MATURAÇÃO

ESTIMATIVA DA CONCENTRAÇÃO EFLUENTE DE COLIFORMES

⇒ Cálculo da contagem de coliformes no efluente

Mod. Hidráulico	Fórmula	Onde:
Fluxo em pistão	$N = N_0 e^{-k_b.t}$	N _o = contagem de coliformes afluente (NPM/100 mL) N = contagem de coliformes afluente (NPM/100 mL)
Mistura completa	$N = \frac{N_0}{1 + k_b.t}$	K _b = constante de decaimento bacteriano (d ⁻¹) t = tempo de detenção total (d) n = número de lagoas em série
Mistura completa em série	$N = \frac{N_o}{\left(1 + k_b \cdot \frac{t}{n}\right)^n}$	d = número de dispersão D = coeficiente de dispersão longitudinal (m²/d) U = velocidade média de percurso no reator (m/d) L = comprimento do percurso longitudinal no reator (m)
Fluxo disperso	$N = N_0 \cdot \frac{4ae^{\sqrt{2}d}}{(1+a)^2 e^{\sqrt[3]{2}d} - (1-a)^2 e^{-\sqrt[3]{2}d}}$ $a = \sqrt{1+4k_b \cdot t \cdot d}$ $d = \frac{D}{UL} = \frac{DI}{L^2}$, will

Eficiência: fluxo pistão > lagoas em série > fluxo disperso > mistura completa

LAGOAS DE MATURAÇÃO

ESTIMATIVA DA CONCENTRAÇÃO EFLUENTE DE COLIFORMES

⇒ Elevadas remoções

- ⇒ Adoção de células (lagoas) em séries
- ⇒ Fluxo em pistão

⇒ Regimes hidráulicos idealizados

Volumes relativos necessários para se atingir uma determinada eficiência de remoção, em função do número de reatores de mistura completa em série.

Lagoas série	Volume relativo (k _b .t)					
(#)	E = 90 %	E = 99 %	E = 99,9 %	E = 99,99 %		
1	9,0	99	999	9999		
2	4,3	18	61	198		
3	3,5	11	27	62		
4	3,1	8,6	18	36		
5	2,9	7,6	15	27		
∞ (f. pistão)	2,3	4,6	6,9	9,2		

 $K_b \rightarrow Volume total (cálculo de t \rightarrow V=t.Q)$ Exemplo: $k_b = 1,5 d$

4

7

8

ESTIMATIVA DA CONCENTRAÇÃO EFLUENTE DE COLIFORMES

⇒ Regime hidráulico de fluxo disperso

 \Rightarrow Elevadas eficiências (> 99,9) – t não excessivos Número de dispersão (d) < 0,3 (preferencialmente < 0,1)

Relação (L/B) superior a 5

- ⇒ Relação L/B para lagoas com divisórias internas
- Divisórias paralelas à largura (B) $L_B = \frac{B}{L} (n+1)^2$
- Divisórias paralelas ao comprimento (L) $L_B = \frac{L}{B}(n+1)^2$

L = comprimento da lagoa (m)

B = Largura da lagoa (m)

N = número de divisórias internas

LAGOAS DE MATURAÇÃO

ESTIMATIVA DA CONCENTRAÇÃO EFLUENTE DE COLIFORMES

- ⇒ Coeficiente de decaimento bacteriano k_b
 - ⇒ Valores apresentados na literatura 0,5 2,6 d
 - ⇒ Evidências valores sejam mais próximos a 1,0 d⁻
 - ⇒ Valores sugeridos em função regime hidráulico

Lagoa	Faixa pronfundidade (m)	K _b (d ⁻) Mistura completa	K _b (d⁻) Fluxo disperso
Facultativa	1,5 – 2,5	0,4-1,0	0,2-0,4
Maturação	0.8 - 1.4	0,5-2,5	0,3 - 0,8

Valores expressos para 20° C (temperatura do líquido)

- ⇒ Mistura completa **menos indicado** (apenas L/B = 1)
- $\Rightarrow k_{bT} = K_{b20} \cdot \theta^{(T-20)} \theta = 1,07$

LAGOAS DE MATURAÇÃO

CRITÉRIOS DE PROJETO

- ⇒ Regime hidráulico indicado (elevadas eficiências)
 - ⇒ Fluxo em pistão: percurso predominantemente longitudinal , que pode ser alcançado numa lagoa com chincanas através de defletores que fornecem um percurso em zig-zag.
 - ⇒ Lagoas em série: preferencialmente 3 ou mais.
- ⇒ Profundidade
 - ⇒ Baixas (radiação solar, fotossíntese, elevação pH)
 - \Rightarrow Faixa: 0,8 1,5 m
- ⇒ Observância de outros critérios
 - ⇒ Tempo de detenção mínimo de 3 dias em cada lagoa

 \Rightarrow

LAGOAS DE MATURAÇÃO

DIMENSIONAMENTO

- ⇒ Adotar configuração (n lagoas em série, uma lagoa chicanas)
- ⇒ Adotar profundidade → Cálculo da área

Exemplo:

Dimensionar um sistema de lagoas de maturação para tratar os efluentes de um sistema de lagoas facultativas, com as seguintes características:

- ⇒ População: 20.000 habitantes
- ⇒ Vazão afluente: 3000 m³/dia
- ⇒ Temperatura: 23° C (líquido)
- ⇒ Lagoa facultativa
 - o Número de lagoas: 2
 - o Comprimento de cada lagoa: L = 269 m
 - o Largura: B = 108 m
 - Profundidade: H = 2,0 m